In Vivo Identification of Neural Stem Cells in the Enteric Nervous System

نویسندگان

  • Cátia Susana Torres Laranjeira
  • Catia Laranjeira
چکیده

The enteric nervous system (ENS) in vertebrates is derived from neural crest cells which emerge during embryogenesis from the hindbrain and, following stereotypical migratory pathways, colonize the entire gastrointestinal tract. Assembly of enteric ganglia and formation of functional neuronal circuits throughout the gut depends on the highly regulated differentiation of enteric neural crest stem cells (eNCSCs) into a plethora of neuronal subtypes and glia. The identification of eNCSCs and the lineages they generate is fundamental to understand ENS organogenesis. However, the study of the properties of eNCSCs has been hindered by the lack of specific markers and genetic tools to efficiently identify and follow these cells in vivo. Although previous in vitro studies have suggested that Sox10-expressing cells of the mammalian gut generate both enteric neurons and glia, the differentiation potential of these Sox10 cells in vivo is currently unclear. Here, we have developed a genetic marking system which allows us to identify Sox10 cells and follow their fate in vivo. Using this system we demonstrate that Sox10 cells of the gut generate both enteric neurons and glia in vivo, thus representing multilineage ENS progenitors. To examine whether the neurogenic potential of Sox10 eNCSCs is temporally regulated over the course of gut organogenesis, we generated additional transgenic mouse lines expressing a tamoxifen-inducible Cre recombinase (iCreER) under the control of the Sox10 locus (Sox10iCreER). Activation of iCreER in Sox10iCreER transgenic mice at specific developmental stages and analysis of enteric ganglia from adult animals showed that the pool of Sox10 cells progressively lose their neurogenic potential.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review of the Factors Affecting the Proliferation of Neural Stem and Progenitor Cells

Neural stem cells are undifferentiated cells that are located in limited areas of central nervous system. These cells have proliferation and self-renew ability and can be differentiated into neurons and glial cells. Mature nerve cells do not have proliferative ability; and due to the limited number of nerve stem cells, injuries to the nervous system are not recoverable. The purpose of this revi...

متن کامل

Differentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold

       The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...

متن کامل

The Effect of Rosmarinic Acid in Neural Differentiation of Wartons Jelly-derived Mesenchymal Stem Cells in Two Dimensional and Three Dimensional Cultures using Chitosan-based Hydrogel

Numerous studies have shown the positive effects of rosmarinic acid on the nervous system. Rosmarinic acid as a herbal compound with anti-inflammatory effects can prevent the destructive effect of inflammation on the nervous system. Furthermore, various studies have emphasized the advantages of three dimensional (3D) culture over the two dimensional (2D) culture of cells. In this study, thermos...

متن کامل

Irisin protect the Dopaminergic neurons of the Substantia nigra in the rat model of Parkinson’s disease

Objective(s): Exercise ameliorates the quality of life and reduces the risk of neurological derangements such as Alzheimer’s (AD) and Parkinson’s disease (PD). Irisin is a product of the physical activity and is a circulating hormone that regulates the energy metabolism in the body. In the nervous system, Irisin influences neurogenesis and neural differentiation in mic...

متن کامل

O 9: Immunomodulatory Effects of Neural Stem Cell on Multiple Sclerosis: A Systematic Review

Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are chronic inflammatory demyelinating disorders of central nervous system (CNS). While the cause is unclear, the fundamental mechanism is thought to be destruction of myelin sheaths of neurons through immune system. One of the approaches being proposed in EAE therapy is neural stem cells (NSCs) trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010